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Abstract: Resting-state functional near infrared spectroscopy (fNIRS) scanning has attracted
considerable attention in stroke rehabilitation research in recent years. The aim of this study was
to quantify the reliability of fNIRS in cortical activity intensity and brain network metrics among
resting-state stroke patients, and to comprehensively evaluate the effects of frequency selection,
scanning duration, analysis and preprocessing strategies on test-retest reliability. Nineteen
patients with stroke underwent two resting fNIRS scanning sessions with an interval of 24 hours.
The haemoglobin signals were preprocessed by principal component analysis, common average
reference and haemodynamic modality separation (HMS) algorithm respectively. The cortical
activity, functional connectivity level, local network metrics (degree, betweenness and local
efficiency) and global network metrics were calculated at 25 frequency scales× 16 time windows.
The test-retest reliability of each fNIRS metric was quantified by the intraclass correlation
coefficient. The results show that (1) the high-frequency band has higher ICC values than the
low-frequency band, and the fNIRS metric is more reliable than at the individual channel level
when averaged within the brain region channel, (2) the ICC values of the low-frequency band
above the 4-minute scan time are generally higher than 0.5, the local efficiency and global
network metrics reach high and excellent reliability levels after 4 min (0.5< ICC< 0.9), with
moderate or even poor reliability for degree and betweenness (ICC< 0.5), (3) HMS algorithm
performs best in improving the low-frequency band ICC values. The results indicate that a
scanning duration of more than 4 minutes can lead to high reliability of most fNIRS metrics when
assessing low-frequency resting brain function in stroke patients. It is recommended to use the
global correction method of HMS, and the reporting of degree, betweenness and single channel
level should be performed with caution. This paper provides the first comprehensive reference
for resting-state experimental design and analysis strategies for fNIRS in stroke rehabilitation.
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1. Introduction

In the last 30 years, functional near-infrared spectroscopy has gained widespread use in neuro-
science research thanks to continuous advances in technical methods such as light source-detector
arrangements, simulation of light propagation in the head [1,2], image reconstruction and data
analysis [3–5]. Because of its advantages of safety, noninvasiveness, ease of mobility, and
resistance to motion interference, an increasing number of researchers in the field of rehabilitation
have chosen fNIRS as a research tool to explore the neuroimaging of patients, especially in
the rehabilitation process of stroke patients [6–9]. Stroke is an injury to the central nervous
system caused by the rupture or blockage of cerebral blood vessels, and its recovery is a complex
intertwined process of motor, cognitive, and speech dysfunction and neurological recovery
[10,11]. fNIRS can be used with specific dysfunctional task paradigms (upper and lower limb
movements [12], gait [13], postural balance [14], constraint-induced movements [15], etc.)
to provide real-time dynamic detection of brain functional activity while performing the task,
evaluate the brain activation pattern, and reflect neural remodelling through longitudinal follow-up
studies in stroke patients.

Sufficiently high test-retest consistency is critical in longitudinal studies [16,17], and to account
for changes in fNIRS signals over the course of recovery, it is important to confirm the reliability of
the technique as applied to neuroimaging in stroke. However, to date, there has not been a study of
the test-retest reliability of fNIRS in stroke patients. This may be due to the difficulty in ensuring
consistent engagement and cooperation in stroke patients performing repeated measurement
tasks before and after. The simple and stable process of resting-state measurements provides
an effective solution to this problem. Resting-state fNIRS studies have reported deficits in
frontoparietal cortical functional connectivity in stroke patients compared to healthy brains [18],
and longitudinal data have shown improved connectivity between primary motor, somatosensory,
and premotor areas in the affected hemisphere [7]. Furthermore, although stroke lesions are
usually concentrated around specific vascular regions, neuroimaging and statistical studies have
confirmed that stroke has a global impact on the entire brain and its network properties and is
therefore considered a network disease [11,19]. The network-based approach to research can
provide greater insight into resolving stroke-related neurological deficits and recovery [20,21]. If
network metrics can demonstrate strong test-retest reliability, they have the potential to be used
as biomarkers for improving prognostic ability and therapeutic interventions in further poststroke
studies in both acute and chronic phases. Therefore, the main purpose of this study is to quantify
the test-retest reliability of fNIRS in cortical activity intensity and brain network assessment
through resting-state measurement in patients with stroke.

A number of studies have reported the test-retest reliability of fNIRS outside the field of stroke
rehabilitation, using the intraclass correlation coefficient (ICC) as the measure of test-retest
reliability [22–24]. Most studies analysed the number of activated channels, activation level
and activation imaging consistency of two or three fNIRS measurements in the time range of 1
day to several months based on specific task stimulation. Only a few fNIRS studies on graph
theory parameters have confirmed the good reliability of binarization and weight networks in
resting-state measurements of healthy adults [25,26]. One of them performed a comparison of
ICC between two preprocessing methods, i.e., filtering at 0.01-0.08 Hz (commonly considered
the frequency band of neural activity) and independent component analysis (ICA); there were
no significant differences [25]. The results of another study on an auditory task confirmed that
the haemodynamic modality separation (HMS) preprocessing algorithm significantly improved
the reliability of fNIRS measurements [27]. It is difficult to summarize the effect of different
preprocessing methods on fNIRS test-retest reliability based on previously published studies.

In fact, there is no consensus regarding the signal processing methods of fNIRS imaging
[28,29]. The presence of interfering components such as slow hemodynamic signal, systemic
physiological noise, scalp interference [30–32] and motion artifacts in the fNIRS signal [33,34]
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may lead to a high false-incidence rate or high false-negative rate in inter-channel correlation
analysis [35]. The aim of signal preprocessing is to remove haemodynamic changes unrelated
to neurovascular coupling, and it is considered that the most promising method to remove this
interference is the combination of short-distance channel measurement and a regression algorithm
[6,28]. However, popular commercial fNIRS systems usually do not have the hardware facilities
of short-distance channels. Under the condition that it is impossible to arrange short-distance
channels, the commonly used preprocessing methods to remove scalp and global blood flow
noise to some extent are principal component analysis (PCA) [36], common average reference
(CAR) [37], HMS [38] and ICA [39] algorithms. Although reliability is not the only parameter
to consider when choosing data processing and analysis strategies, it can be used as an important
tool to help select processing methods. Therefore, to improve the generalization of the findings,
another aim of this study is to explore the impact of different preprocessing methods on the
test-retest reliability of fNIRS. Here, we restrict our focus to algorithms for automatic processing
(i.e., PCA, CAR, and HMS). Because the ICA algorithm requires visual exclusion of uninteresting
components in the intermediate process, thereby introducing human interference, it is not included
in the research approach of this paper.

In addition, the measurement time of neuroimaging and the choice of analysis frequency
band have been confirmed to have a significant effect on ICC in functional magnetic resonance
imaging (fMRI) studies. Zuo et al. reported that regional homogeneity showed a reliability
level of more than 50% in a time series of more than 4 minutes [40]. The reliability of standard
bandpass-filtered data (approximately 0.01-0.1 Hz) is lower than that of other wider band-filtered
data [17]. However, no fNIRS test-retest reliability studies have focused on these two important
variables. A convenient method to study the signal characteristics in the time-frequency domain
is the continuous wavelet transform (CWT) [41,42]. Through the selection of an appropriate
mother wavelet function and central frequency, CWT can transform time series from the time
domain to the time-frequency domain and ensure good time-frequency resolution. This provides
a suitable analytical tool for this paper to explore the impact of measurement duration and band
selection on the reliability of fNIRS for stroke rehabilitation.

This paper is based on the dataset of two resting-state fNIRS scanning sessions of patients
with subacute stroke (within 3 months after stroke). Considering the obvious changes in brain
function in patients with subacute stroke on a week-based time scale [43,44], the interval between
the two sessions was only 24 hours. On this basis, the collected fNIRS signals were processed by
PCA, CAR and HMS. The intensity of brain activity and the characteristics of the brain network
on multiple time and frequency scales were calculated by wavelet transform and graph theory
algorithms. Then, the test-retest reliability of the corresponding preprocessing method and
time-frequency scale characteristics between the two sessions was analysed. To our knowledge,
this is the first test-retest reliability study on fNIRS application in resting-state cortical activity
and brain networks in patients with stroke. We aim to conduct a comprehensive reliability
assessment and to provide valuable measurement and analysis references for the application of
fNIRS in the stroke rehabilitation field.

2. Methods

This article follows the fNIRS studies guideline [45] to report on the research.

2.1. Subjects and fNIRS data acquisition

A total of 19 stroke subjects were recruited. The admission criteria were as follows: (1) within 2
weeks to 3 months after stroke and (2) unilateral lesions. The exclusion criteria were as follows:
(1) severe dysfunction or failure of the heart, liver, lung, kidney and other important organs; (2)
obvious cognitive impairment, which makes it impossible for participants to understand and
cooperate with the explanation; and (3) continuous deterioration of the disease, new infarction or
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secondary bleeding. All subjects provided written informed consent before participating, and
the study was approved by the Human Ethics Committee of the National Research Center for
Rehabilitation Technical Aids. Table 1 shows the clinical details of the subjects.

Table 1. Clinical details.

Subjects Sex Age BMI Type of
stroke

Affected
side

Time
post-stroke

(day)
Site of lesion BI NIHSS

Fugl-Meyer DPF

UE LE 760 nm 850 nm

1 M 32 33.0 H R 85 L, BG 50 7 17 25 6.35 5.29

2 M 49 29.4 I L 45 R, BS 85 4 31 32 6.82 5.76

3 M 57 22.5 I R 33 L, BG, TR 90 3 31 26 7.03 5.97

4 F 63 23.3 H L 53 R, BS 40 9 4 14 7.18 6.12

5 F 61 26.0 I R 81 L, BG, CR 70 5 30 32 7.13 6.07

6 M 42 24.6 H L 26 R, BG 75 4 31 34 6.63 5.57

7 M 22 21.6 I L 90 R, BG 85 3 56 34 6.06 5.00

8 M 61 28.7 H L 74 R, FL, PL 35 9 6 16 7.13 6.07

9 M 60 26.0 H L 94 R, BG, TR, CR 80 3 34 30 7.11 6.04

10 M 67 24.6 I L 76 R, FL, TL, INS, BG 75 7 20 16 7.29 6.22

11 M 30 32.6 H R 37 L, BG, 95 2 60 34 6.30 5.23

12 M 49 20.1 I R 53 L, PO 90 2 44 34 6.82 5.76

13 F 52 24.8 I L 84 R, BS, CER 50 6 20 22 6.90 5.84

14 F 69 23.4 I L 64 R, BS 20 11 4 0 7.34 6.27

15 M 26 23.0 I R 34 L, BG, CR 85 3 30 29 6.18 5.12

16 M 49 28.9 H R 39 L, BG, TR 55 7 20 26 6.82 5.76

17a M 40 25.6 H L 79 R, BG 90 4 31 25 6.58 5.51

18a M 30 31.2 H L 83 R, FL 55 5 25 22 6.30 5.23

19a M 47 26.0 I L 7 R, BG 10 8 19 24 6.77 5.70

BG, basal ganglia; BI, the Barthel index of ADL; BMI, body mass index; BS, brain stem; CER, cerebellum; CR, corona
radiata; DPF, the differential pathlength factor [46]; F, female; FL, frontal lobe; L, left; LE, Fugl–Meyer Assessment-lower
extremities; H, hemorrhagic; I, ischemic; INS, insula; L, left; M, male; NIHSS, NIH stroke scale; PL, parietal lobe; PO,
pons; R, right; TL, temporal lobe; TR, thalamic region; UE, Fugl–Meyer Assessment-upper extremities.
ameans excluded.

The continuous wave fNIRS instrument NirSmart (Danyang Huichuang Medical Equipment
Co., Ltd., China) was applied to acquire resting state fNIRS data twice with a duration of 9
minutes and an interval of 24 hours, the scan time of each subject was fixed at 5 pm. The
acquisition time was set to 9 minutes to include at least five low frequency periods (0.01 Hz) to
ensure the effectiveness of subsequent phase-related analysis. During the two scanning sessions,
the subjects were asked to sit quietly on a stool with armrests facing the same direction in the
same room, staying relaxed and ensuring that they were awake to avoid falling asleep. On the
side of the subjects, the researchers made sure that the subjects’ eyes were fixed on the white
wall in front of them, and were reminded with a recorded slight taping sound when they were
sleepy or distracted. Sixteen light sources and 7 probes constituted 24 measurement channels of
3 cm, which were arranged in the left and right prefrontal cortex (LPFC/RPFC) and the left and
right motor cortex (LMC/RMC), as shown in Fig. 1(a). When wearing the optode cap, it was
ensured that the Cz point of the electrode cap coincided with the Cz point of the scalp surface
measurement, and the consistency of positioning at the individual level was further ensured by
referring to the photograph taken at the first session. The sampling frequency was set to 10 Hz
using two wavelengths (760 nm and 850 nm) for scanning.
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Fig. 1. Flow chart of cortical activity and brain network reliability analysis at multiple
preprocessing modalities and multiple time-frequency scales. (a) The light sources and
probes arrangement corresponding standardized 10-20 location and different preprocessing
steps for the two scanning sessions. Four channels were arranged around Fp1 and Fp2 in the
LPFC and RPFC, respectively. Eight channels were arranged around C3 and C4 in the LMC
and RMC, respectively. The location, sensitivity and resolution maps were created using
AtlasViewer [47]. (b) WA was calculated from each channel signal, WPCO was calculated
from every pairwise channel, network matrix based on WPCO value was constructed with
50% sparsity and network metrics were calculated. The grayscale value of the network
map indicates the magnitude of the WPCO value. (c) Calculation of intraclass correlation
coefficients for fNIRS metrics obtained by two scanning sessions.

2.2. Data preprocessing

It should be noted in advance that for all subjects, the affected hemisphere was indicated as the
right side. The cortical haemoglobin concentration signals parsed by resting fNIRS data are
usually disturbed by motion artefacts, breathing, heartbeat and scalp noise [48,49]. A common
practice to eliminate the effects of respiration and heartbeat is by low-pass filtering below 0.2 Hz,
while this study will use the CWT algorithm to resolve the signal features corresponding to 25
frequency scales in the 0.01-2 Hz band, thus omitting the low-pass filtering step. The overall
preprocessing process is performed in MATLAB software as follows:

(1) Remove the first minute data to ensure data stability. For a single channel of light intensity
signal, if the intensity >1000 or intensity <0.5 or the mean/standard deviation of the intensity
time series <2, it was considered a noisy channel [50]. The cortical activity and brain network
metrics calculated from the noisy channels will be excluded from the subsequent analysis. If the
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number of noisy channels exceeded 25% of the total number of channels (24× 25%= 6), the
subject was considered to have low signal quality and needed to be excluded. A total of 3 subjects
were excluded from this study, leaving 16 subjects to continue with the follow-up analysis.(2)
Motion artefact interference was removed by a time derivative distribution repair algorithm [51].
Signal spikes were removed by the Hample filtering algorithm with filter parameters of k= 50
and nsigma= 4. The 8th order bandpass Butterworth filter of 0.01-2 Hz was used to remove low
frequency drift and high frequency instrument noise.(3) The hmrIntensity2OD and hmrOD2Conc
functions in the Homer2 toolbox were used to convert light intensity signals into oxygenated
haemoglobin (HbO2) and deoxyhaemoglobin (HbR) signals [52].(4) Three different algorithms
for purifying the haemodynamic changes related to neurovascular coupling were performed on
HbO2 and HbR signals:

a. PCA
The working principle of PCA is to eliminate several components with the greatest contribution

to variance, which correspond to the first few spatial covariances of fNIRS data and are considered
to represent the global impact of all channels [28]. PCA typically performs better in multichannel
fNIRS measurements across brain regions, similar to the design of this study. The number of
PCA components removed in this study was set to explain 80% of the variance [29].

b. CAR
Based on the assumption that global noise affects all fNIRS channels, the CAR algorithm

subtracted the mean value of all channel time series from the time series of each channel to
reduce global interference [53]. Similar to PCA, the CAR algorithm is more effective in multiple
brain functional area measurement datasets than local measurements. We excluded channels
with low signal-to-noise ratios when performing the procedure of averaging over all channels.

c. HMS
The HMS algorithm is based on the fact that there is a negative correlation between HbO2

and HbR changes related to neurovascular coupling. Under the framework of HMS analysis, the
relationship between HbO2 and HbR in the global component is assumed to be positive. The
functional and system components are separated by an empirical procedure determining the
respective coefficients [38].

The HbO2 and HbR signals and their spectra processed by the three algorithms are shown
in Fig. 2. From the comparison between Fig. 2(c) and Fig. 2(f), we can see that after the three
processing methods, the frequency spectrum of the HbO2 signal decreases obviously in the
full frequency band from 0.01-2 Hz, while the spectrum of the HbR signal changes little. This
confirms that the HbR signal is less likely to be disturbed by scalp and global noise. For the sake
of convenience, the data that are not processed by these three algorithms are referred to as raw
data in the following.

2.3. Continuous wavelet transform and brain network analysis

The overall CWT and brain network analysis process is shown in Fig. 1(b). As already mentioned,
CWT is able to transform the fNIRS signal from the time domain to the time-frequency domain.
Based on the Morlet wavelet transform can well balance the localization of time and frequency,
it is chosen as the mother wavelet function with a centre frequency of 1 [54,55]. Twenty-five
logarithmic scales were selected for wavelet transformation in the frequency domain, and sixteen
30-s time windows were selected in the time domain for analysis of the wavelet transformation
results. Thus, for each channel of a single subject, a 25× 16 wavelet amplitude (WA) matrix was
obtained. WA can be interpreted as a metric of energy to quantify the intensity of cortical activity.
For every two channels, a 25× 16 wavelet phase coherence (WPCO) matrix was obtained by
calculating the stable level of the instantaneous phase difference between the two signals at a
certain frequency during the measurement (Fig. 1(b)). The WPCO ranges from 0 to 1, and a
larger value indicates that the phase difference between the two time series is more coherent at
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Fig. 2. Time series and spectrum of haemoglobin signal after processing by three methods
of removing scalp and global blood flow noise. (a-c) Time series and spectrum of HbO2.
(d-f) Time series and spectrum of HbR.

that frequency scale; therefore, it can be adopted as a measure of brain functional connectivity
[56].

For each frequency scale and each time window, we can obtain the functional connectivity
network with the WPCO value as the connectivity strength. Considering the need to balance
false-positive and false-negative connections for constructing brain networks, the sparsity of
brain networks was selected as 50% with reference to the studies of Marcel et al. and Wang et al.
[57,58] That is, a WPCO value higher than the median of the connectivity matrix (24× 24) was
retained, a WPCO value lower than the median was set to 0, and the weight of a connection was
defined as the reciprocal of the WPCO value. As a result, we complete the construction of the
weight network for each time-frequency scale.

Based on the obtained weight brain network, we focused on exploring three commonly used
global network topology metrics: average shortest path length, global efficiency, and weighted
clustering coefficient [59], as well as three commonly used node metrics: degree, betweenness,
and local efficiency [26]. These metrics, which are not necessarily correlated with each other,
reflect different characteristics of brain networks. For a comprehensive description and equation
of the metrics, please refer to the research of Rubinov and Sporns. All network metrics were
calculated using the open-source MATLAB toolbox [60].

2.4. Test-retest reliability analysis

We used ICC (one-way random effects) to quantify the reliability of WA, WPCO and brain
network metrics. In this work, we focused more on the reproducibility of the mean of repeated
measurements, so the ICC was calculated as follows:

ICC =
MSb − MSw

MSb + (k − 1)MSw
(1)

where MSb indicates between-subject variation, MSw indicates within-subject variation, k = 2
represents the number of sessions [61,62]. In general, ICC values ranged from 0 to 1 and were
classified into five test-retest reliability levels: poor (ICC< 0.2), fair (0.2< ICC< 0.39), moderate
(0.4< ICC< 0.59), high (0.6< ICC< 0.79), and excellent (ICC> 0.8). However, negative ICC
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values may occur during the calculation, the reason for which is not clear, and negative ICC
values were corrected to 0 in this study [17,26,40,63].

After calculating the ICC matrix (25× 16) of each time-frequency scale, the average ICC
values of each cortex area were calculated for WA and nodal network metrics, and the average ICC
values between each pair of brain regions were calculated for WPCO. Then, we comprehensively
investigated the resting-state fNIRS scanning test-retest reliability of stroke patients in the
following aspects.:

(1) Selection of frequency band and scanning duration
For the ICC matrix corresponding to each parameter of interest, the variation characteristics

with frequency were observed, and the frequency band range that needs to be divided in further
analysis was determined. The scanning duration was classified into eight 1-minute time windows.
Two-way ANOVA was used to determine whether frequency and time have interactive effects on
ICC, and the post hoc test was used to examine the effect of the choice of the analysed frequency
band and the scan duration on ICC.

(2) Single channel level and brain region level
After determining the frequency band of interest, the test-retest reliability at the single channel

level and brain region level was compared within each band. The single channel level refers to
the average ICC value of all channels in the brain region after calculating the ICC value of a
single channel, and the brain region level refers to the ICC value calculated after calculating the
average measurement of brain activity or network in that brain region. The difference between
them was compared by paired sample t tests in the time domain.

(3) Different preprocessing methods
In both of the above two investigating aspects, paired sample t tests were used to compare the

change in ICC values corresponding to the PCA, CAR, and HMS methods relative to the ICC
values of raw data.

Bonferroni correction was adopted in statistical analysis. However, the correction method is
too strict, so we used different correction thresholds for the statistical analysis of different fNIRS
metrics. For the T-test involved in WA, WPCO and local network metrics, p< 0.001 (0.05/50);
For the T-test involved in global network metrics, p< 0.0083 (0.05/6).

3. Results

3.1. Influence of frequency band and scanning duration

The ICC matrices corresponding to the global network metric, the average WA and average
local network metrics for brain regions, and the WPCO metric between brain regions were
examined for all preprocessing methods. We found that the ICC values in the low-frequency
band (0.01-0.08 Hz) were all smaller than those in the high-frequency band (0.145-2 Hz). The
low-frequency fluctuations (0.01-0.08 Hz) of the resting state fNIRS signal are thought to possibly
reflect spontaneous neural activity [15,64], 0.145-2 Hz was referred to previous studies on the
division of respiratory (0.145-0.6 Hz) and heart rate activity (0.6-2 Hz) frequency bands [18,65].
Thus, we dividing the frequency scale into the two bands, which also avoided considering the
influence of Mayer waves (∼0.1 Hz) [49]. A two-way ANOVA was performed by combining the
ICC values in the two frequency bands with eight 1-minute time windows, and it was found that
the ICC of the high-frequency band was significantly higher than that of the low-frequency band
for almost all the measures of interest. Additionally, the ICC values showed a tendency to increase
with time, and there was a significant difference in test-retest reliability for scan durations above
4 minutes relative to those within 4 minutes. Figure 3 shows the results for several parameters
across different preprocessing methods or brain regions. For a more comprehensive statistical
analysis of ICC in the time and frequency domains, please refer to Supplementary File S1.
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Fig. 3. Examples of ICC changes in parameters in the time and frequency domains. (a) The
ICC values for short path length. (b)The mean ICC values for local efficiency of all channels
(4 channels) in RMC. (c) The mean ICC values of all channel pairs (16 channel pairs) for
WPCO between LPFC and RPFC. The curves of the middle column were the probability
density distribution curves of ICC value per minute, the curves of the right column were the
probability density distribution curves of high frequency band and low frequency band, and
the area under each curve was 1. On the time scale, the ICC values of the parameters reached
a relatively stable level at 8 minutes; thus, only significant results were shown compared
with the ICC at 8 minutes. * indicates p< 0.05, high (0.145-2 Hz), low (0.01-0.08 Hz).

3.2. Comparison between single channel level and brain region level

Figures 4–8 show the ICC values corresponding to the WA, WPCO and local network metrics.
The frequent appearance of four colours (corresponding to the signals of four processing modes)
with slanted upwards thin arrows in the Figures implied that the ICC values were significantly
larger at the brain region level than at the single channel level (p< 0.001, Bonferroni corrected,
alpha= 0.05/50), and this is true for all the investigated metrics of interest.

3.3. Influence of preprocessing methods

The effect of the preprocessing methods on the test-retest reliability showed frequency specificity.
As shown in Figs. 4–9, for all cortical activity intensity and network measures, the three
preprocessing methods significantly reduced the ICC values in the high-frequency band. Generally,
the ICC value of the low-frequency band was significantly improved by the three preprocessing
methods, especially in local efficiency (p< 0.001, Bonferroni corrected, alpha= 0.05/50) and
global network metrics (p< 0.0083, Bonferroni corrected, alpha= 0.05/6).

3.4. Comparison between single-frequency and frequency-band analysis at the low
frequency level

In the usual sense, fNIRS studies are interested in the low-frequency band; therefore, the following
describes the level of reliability (region level) for each metric in the low-frequency band. The
single frequency level refers to the average ICC value of all scales in the low or high frequency
band after calculating the ICC value of a single scale. The frequency band level refers to the ICC
value calculated after calculating the average measurement of brain activity or network in low or
high frequency band.
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Fig. 4. Comprehensive evaluation of ICC values of 4 brain regions calculated by WA. The
top two lines represent HbO2, and the bottom two lines represent HbR. The grey filling
of the image refers to the single channel level, and the white filling represents the brain
region level. The dotted lines in the subfigures represent ICC=0.5. The oblique upwards
thin arrows of different colours in the picture mean that the ICC at the brain region level
is significantly higher than that at the single channel level under different preprocessing
methods (paired sample t test, p < 0.001, Bonferroni corrected, alpha = 0.05/6). The thick
upwards or downwards arrows of different colours indicated that the three preprocessing
methods significantly increased or decreased the ICC value of raw data.

Fig. 5. Comprehensive evaluation of ICC values of 6 brain region pairs calculated by
WPCO. The meaning of the subfigures and symbols can be found in the accompanying notes
to Fig. 4.

(1) Single frequency level
Figure 9 demonstrates that the global network metric was able to achieve moderate to high

test-retest reliability (0.4< ICC< 0.8) at single frequency levels in the low-frequency band with
a scan time of more than 4 minutes. In contrast, as shown in Figs. 4–8, the ICCs of the WA,
WPCO and local brain network metrics in the low-frequency band exhibited only moderate, fair,
or poor reliability levels (ICC< 0.6). In particular, the degree and betweenness show only fair or
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Fig. 6. Comprehensive evaluation of ICC values of 4 brain regions calculated by degree.
The meaning of the subfigures and symbols can be found in the accompanying notes to
Fig. 4.

Fig. 7. Comprehensive evaluation of ICC values of 4 brain regions calculated by betweenness.
The meaning of the subfigures and symbols can be found in the accompanying notes to
Fig. 4.

even poor reliability levels (ICC< 0.4). The above results were performed at the level of a single
frequency, which means that in the reliability evaluation of the low-frequency band, the ICC
calculated at a single frequency scale within the frequency band was statistically analysed.

(2) Frequency band level
The actual fNIRS dataset analysis is concerned with the variation in haemoglobin concentration

across the frequency band. In view of the unsatisfactory test-retest reliability at the single frequency
level, we speculate that the analysis of the band level will improve the reliability of the fNIRS
measure and supplement the ICC statistics at the band level in the low-frequency band (p< 0.001).
For WA, ICC values improved to 0.4-0.9 (Fig. 10(a)); ICC values for local efficiency and WPCO
reached 0.5-0.9 after 4 minutes (for raw data and HMS, see Fig. 10(d) and Fig. 11). The reliability
of the global network parameters also reached moderate to excellent levels after 4 minutes
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Fig. 8. Comprehensive evaluation of ICC values of 4 brain regions calculated by local
efficiency. The meaning of the subfigures and symbols can be found in the accompanying
notes to Fig. 4.

Fig. 9. Comprehensive evaluation of ICC values calculated by global network metrics. The
thick upwards or downwards arrows of different colours indicated that the three preprocessing
methods significantly changed the ICC value of raw data (paired sample t test, p< 0.0083
(Bonferroni corrected, alpha= 0.05/6).

(0.5< ICC< 0.9, except for the clustering coefficients of PCA-treated HbR). Although the ICC
values for degree and betweenness showed an increase, they presented rather unstable reliability
levels over the full time period in each brain region. Unlike the single frequency level, the three
preprocessing methods reduced the test-retest reliability of degree (except for the HbR of RPFC
treated by HMS), as shown in Fig. 10(b) and Fig. 10(c).

The three preprocessing methods had different effects on the test-retest reliability at the
single frequency level and the frequency band level. At the single frequency level, the three
preprocessing steps improved the ICC values compared to raw data overall, since PCA and
HMS reduced the low-frequency ICC values of WA, WPCO and degree in some brain regions,
while CAR only reduced the WPCO of LMC-RMC and the degree of LPFC. Therefore, we
concluded that the CAR algorithm performs better in improving the test-retest reliability. At
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Fig. 10. Comparison of test-retest reliability of WA, degree, betweenness and local
efficiency at the single frequency level and frequency band level (all at the brain region
level). The grey filling of the image refers to the single frequency level, and the white
filling represents the frequency band level. The dotted lines in the subfigures represent
ICC= 0.5. The oblique upwards thin arrows of different colours in the picture mean that the
ICC at the frequency band level is significantly higher than that at the single frequency level
under different preprocessing methods (paired sample t test, p< 0.001). The thick upwards
or downwards arrows of different colours indicated that the three preprocessing methods
significantly increased or decreased the ICC value of raw data.

the frequency band level, the effect of HMS on improving ICC values is more stable across
the metrics, especially for the local efficiency and global network metrics. Although HMS
significantly reduced the ICC values of WA and degree for RPFC and WPCO for LPFC-LMC,
the reduced ICC values were within the acceptable range (ICC values between 0.4 and 0.8 after 4
minutes).
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Fig. 11. Comparison of test-retest reliability of WPCO at single frequency level and
frequency band level (all at the brain region level). The meaning of the subfigures and
symbols can be found in the accompanying notes to Fig. 10.

4. Discussion

In this paper, we investigated the test-retest reliability of resting-state cortical activity and
functional network metrics measured by fNIRS in the time-frequency domain (0.01-2 Hz, 0-8
min) for stroke patients by continuous wavelet transform and evaluated the impact on reliability
of three preprocessing methods to automatically reduce system interference, PCA, CAR and
HMS. Based on two fNIRS scanning sessions spaced 24 hours apart, we found that (1) the
high-frequency band with higher global noise content has higher test-retest reliability than the
low-frequency band, (2) the low-frequency bands require more than 4 minutes of scanning
duration to ensure above-moderate reliability, (3) the fNIRS metrics are more reliable when
averaged within brain area channels than at the single channel level, (4) the three automated
algorithms to remove global noise have opposite effects on ICC values in high and low-frequency
bands, and the HMS algorithm performs best in improving the reliability of measures of interest
in low-frequency bands, (5) the test-retest reliability of degree and betweenness is fair or even
poor, and the local efficiency and global network metrics reach high and excellent levels after 4
minutes.

4.1. Selection of frequency, scanning duration and analysis level

The difference in test-retest reliability between high- and low-frequency bands is an interesting
finding that has not been reported in previous fNIRS studies. Studies have demonstrated high
reliability of task-related activation in the frequency bands of 0.018-3 Hz [66], 0.02-0.7 Hz
[22,67], 0.01-0.5 Hz [27] and resting-state brain networks in the frequency band of 0.009-0.08 Hz
[25,26] without considering the effect of the choice of the analysed frequency band on the results.
A previous fMRI study showed that ICC values using bandpass filtering at 0.01-0.1 Hz are
significantly lower than data using bandpass filtering with wider frequency bands [17]. This may
be because the higher frequency band contains more scalp and global blood flow effects, which
are relatively stable in scanning stroke subjects at 1-day intervals. In contrast, the low-frequency
band signal is thought to be primarily associated with local neurogenic activity, and it is difficult
to ensure the constancy of the subject’s thoughts during resting-state measurements, especially
when disturbed by illness, resulting in relatively low anterior-posterior agreement.

From the perspective of scanning time, the results of time-frequency two-way ANOVA (Fig. 3,
Supplementary File S1) and the ICC value at the frequency band level (Fig. 10- Fig. 12) show that
reliability increases with scan duration and reaches above moderate levels only after 4 minutes
or more (ICC> 0.4). Referring to studies of fMRI in healthy subjects, nodal degrees greater
than 5 minutes were more reliable than those less than 5 minutes [17], the test-retest reliability
of regional homogeneity was above the 50% level after 4 minutes [40], and longer scanning
durations led to more significant reliability improvements [68]. We therefore recommend that
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resting-state fNIRS scans in stroke patients in clinical longitudinal studies need to last at least 4
minutes. We speculate that this observation is equally applicable in studies of healthy subjects.

Fig. 12. Comparison of test-retest reliability of global network metrics at the single
frequency level and frequency band level (all at the brain region level). The grey filling of the
image refers to the single frequency level, and the white filling represents the frequency band
level. The dotted lines in the subfigures represent ICC= 5. The thick upwards or downwards
arrows of different colours indicated that the three preprocessing methods significantly
changed the ICC value of raw data (paired sample t test, p< 0.0083 (Bonferroni corrected,
alpha= 0.05/6).

When examining test-retest reliability, metrics at the brain region level are higher than those
at the individual channel level, which is a consistent finding in fNIRS studies [23,24,69], but
previous studies have been based on task activation performance, and our results suggest that
this finding is also applicable to measurements of fNIRS resting cortical activity, functional
connectivity and local network metrics. In addition, with the help of wavelet transform analysis,
our study compared for the first time the test-retest reliability at the single frequency level and
the band level. Similar to the results for the comparison of channels and brain regions, the band
level was more reliable than the single frequency level. These results all seem to indicate that the
larger the scale of the analysis – whether in terms of time, space or frequency – the higher the
test-retest reliability tends to be.

4.2. Effect of different preprocessing methods on the test-retest reliability of each
fNIRS metric

In the high frequency band, the three preprocessing methods to reduce the system noise all caused
the reduction of the frequency spectrum and test-retest reliability of HBO2 and HBR signals.
This suggests that either based on the hypothesis that spatially global disturbances are consistent
(PCA and CAR) [53,70] or the opposite hypothesis of functional activity-related HbO2 and
HbR (HMS) [38], it is effective to remove the interference of scalp and global blood flow. The
decrease in test-retest reliability implies that the removal of the global interference step reduced
within-subject variation while reducing between-subject variation more [71]. The reduction in
retest reliability implies that the global interference removal step reduces intra-subject variability
while reducing inter-subject variability more.

Given the higher reliability of fNIRS metrics at the brain region and frequency band levels,
this paper focuses on the effect of preprocessing methods on the test-retest reliability at these
two levels for low-frequency bands (Fig. 10-Fig. 12). Consistent with resting-state fMRI reports,
different preprocessing methods had inconsistent effects on the test-retest reliability of different
measures, even in different cortical regions of the same measure [17,63]. The performance
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of PCA and CAR is quite similar, which may be attributed to the high similarity between the
PCA component with the greatest contribution to variance and the average time series of the
whole channel [36,72], which can also be supported by the similarity of haemoglobin time series
and spectrum after the two processing steps (Fig. 2). Our results show that HMS has the most
consistent improvement in reliability for the fNIRS metric in the low-frequency band, especially
for the local efficiency and the global network metrics. The reduction in test-retest reliability of
WPCO due to the three methods was in line with our expectation. Low-frequency HbO2 and HbR
also contain the effects of scalp and global interference (such as Mayer waves) [49], which can
lead to an overestimation of the functional connectivity strength. The correction techniques for
non-functional components will undoubtedly weaken this correlation and reduce the test-retest
reliability of functional connectivity [71].

The WA test-retest reliability of HbO2 and HbR was at a stable high level within 0-8 minutes
(0. 4< ICC< 0. 9, see Fig. 10(a)). This shows that the measurement of resting cortical activity
in stroke patients at the brain region level is reliable. Although there is a lack of research
and understanding of fNIRS resting-state cortical activity in stroke patients, fMRI studies have
reported abnormal low-frequency fluctuations in the parietal cortex in stroke patients compared
with healthy controls [73], and the dynamic low-frequency fluctuations in auxiliary motor areas
are significantly related to the improvement of motor function [74]. Clinical follow-up EEG
studies have also identified spectral differences between the affected and healthy hemispheres,
and the variability decreases with the rehabilitation process. The identification of targets using
EEG spectral abnormalities has been reported to enhance the effectiveness of speech therapy
[75–77]. In view of this, the good test-retest reliability of WA makes it possible to become a new
biomarker in future stroke rehabilitation studies.

In the local network metrics, degree and betweenness show unstable reliability, and the ICC
value mostly lies below 50% (Fig. 10(a) and Fig. 10(b)). Poor test-retest reliability of degree
centrality [63] and betweenness [78] in network metrics in healthy subjects has also been reported
previously and should therefore be used with caution in stroke clinical studies as well.

4.3. Limitations and future directions

Several limitations of current study need to be considered. The classification of high and
low frequency bands in this study was first based on the investigation of the statistical results.
We observed the results of ICC statistical analysis of all fNIRS metrics and found significant
differences in the low frequency band (<0.1 Hz) and the high frequency band (>0.1 Hz). The
low-frequency fluctuations (0.01-0.08 Hz) of the resting state fNIRS signal are thought to possibly
reflect spontaneous neural activity and are also a band of interest for fMRI studies [15,64], and
the low frequency band connectivity features have great potential as biomarkers for clinical
applications [79]. Besides, the effect of Mayer wave interference (∼ 0.1 Hz) can reduce the
accuracy of fNIRS estimation and analysis [49]. Thus, we refer to previous studies on the division
of respiratory (0.145-0.6 Hz) and cardiac activity (0.6-2 Hz) frequency bands [65,80], and to
avoid Mayer wave interference, the low frequency range was divided into 0.01-0.08 Hz, and
the high frequency range was divided into 0.145-2 Hz. Although the heartbeat and respiratory
components are often removed as interferers in the fNIRS study, one of our studies demonstrated
the compensation of cortical functional connectivity in the cardiac activity frequency band in
stroke patients [18]. Nevertheless, the ignored 0.08-0.145 Hz was considered to cover information
related to the oscillation of smooth muscles of vessels [81]. As a result, the test-retest reliability
analysis of fNIRS index in this study is not comprehensive on the frequency scale.

Although PCA has been a widely used global correction method, the criteria for removing
components, such as the first principal component [36,82], the first two principal components
[83] and the components with 80% variance contribution [28,29], are still not uniform. We
selected the last one, while different removal criteria may lead to different retest reliability. In
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addition, the choice of sparsity has been reported to have an impact on the value and retest
reliability of network metrics [25,59,84], and it has also been demonstrated that similar statistical
results were obtained under different sparsity or threshold choices [58,85]. The sparsity selection
of 50% was determined by the comprehensive consideration of previous studies, nevertheless,
the reporting of single sparsity may bias the test-retest reliability values.

This paper only focuses on the test-retest reliability of the resting state, while fNIRS has been
used to measure the cortical responses of stroke patients under the paradigm of motor, cognitive
and magnetoelectric stimulation. Future research should be extended to specific rehabilitation
training paradigms. Besides, although test-retest reliability is not the only parameter to be
considered when selecting an analysis strategy, it is a key variable in such an important choice [86].
If a preprocessing method does not guarantee acceptable test-retest reliability while removing
interference, the robustness of the study is bound to be weakened. More work on the reliability
validation of preprocessing or analysis methods needs to be done.

5. Conclusions

To our knowledge, this study provides the first comprehensive assessment of the reliability
of fNIRS-based cortical activity intensity and network metrics for use in resting-state studies
of stroke. We found that most fNIRS metrics achieved high to excellent levels of reliability
at scanning durations of 4 minutes or more. Based on the results, we recommend that in
fNIRS studies of clinical rehabilitation, (1) at least 4 minutes of resting state duration should be
guaranteed to ensure the reliability of cortical activity intensity, functional connectivity, local
efficiency, and global network metrics; (2) the analysis and report should be based on the average
value of the channels in the brain functional area; (3) the HMS algorithm should be considered
for global noise correction in the absence of short distance channels; and (4) the degree and
betweenness metrics should be used with caution.
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